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Abstract-A model for two-phase transport in capillary porous media is presented, in which the two phases 
are viewed as constituents of a binary mixture. The conservation equations are derived from the classical 
separate flow model without invoking ad~tional assumptions. The present fo~ulation, owing to its 
anaiogy to conventional multicomponent mixture flow theories and to a considerable reduction in the 
number of the differential equations required for the primary variables, provides an alternative for the 
theoretical analysis and numerical simulation of two-phase transport phenomena in porous media. Several 
complicated problems such as boundary layer two-phase flows, conjugate two- and single-phase flows in 
multiple regions and transient flows are shown to become more tractable within the framework of this new 

formulation. 

1. INTRODUCTION 

TWO-PHASE flow through porous media is an impor- 
tant topic which spans a broad spectrum of engin- 
eering disciplines. Examples include geothermal 
systems [l-3], oil reservoir engineering 14, 51, post- 
accident analysis of nuclear reactors [6,7], multiphase 
packed-bed reactors 181, disposal of high-level nuclear 
wastes [9], porous heat pipes [IO, 111, drying [12], 
condensation enhancement [13, 141, and thermal 
energy storage. 

Traditionally, the problem of two-phase flow in 
porous media has been approached by the so-called 
separate flow model @FM) [4, 51, which is based on 
a continuum formulation. In this model, the gas and 
liquid phases are regarded as distinct fluids with indi- 
vidual the~od~a~c and transport properties and 
with different flow velocities. The phenomenon is then 
mathematically described by the conservation laws for 
each phase separately and by appropriate interfacial 
conditions between the two phases. The relative per- 
meabilities of both phases, introduced to account for 
a decrease in the effective flow cross-section due to the 
presence of the other fluid, are an important concept 
in such a formulation. 

Due to the inherent nonlinearity of two-phase flow 
problems, exact solutions are limited to a small class 
of problems in one dimension, and many simplifying 
assumptions are employed, e.g. the Buckley-Leverett 
case [4]. Solving practical problems, which usually 
involve multi-dimensional effects, gravity and capil- 
larity, requires suitable numerical procedures. The 
result has been a great number of studies to develop 
robust numerical algorithms, using both finite element 
and finite difference methods [15-l 81. 

While the SFM provides a straightfo~ard and rig- 
orous mathematical description of two-phase fiow in 

porous media, its form is generally inconvenient for 
direct use in numerical simulations due to the fact 
that a large number of differential equations must be 
solved (almost twice as many as compared with the 
single-phase case). This shortcoming becomes even 
more serious in multi-dimensional situations. Often, 
in order to reduce the number of equations, various 
modified formulations are constructed before numeri- 
cal treatment. For more details the interested reader 
is referred to reports in oil reservoir engineering 
119, 201, as well as in nuclear reactor safety analysis 
[IS, 21, 221. 

The main purpose of this work is to develop a 
new formulation for two-phase flow through capillary 
porous media that is both physically meaningful and 
practically useful. In this model, called the two-phase 
mixture model, the two phases are regarded as con- 
stituents of a binary mixture. So as to distinguish this 
mixture from a conventional multicomponent mixture 
[23], it is hereafter referred to as a multiphase mixture. 
In this definition, phases are assumed to be distinct 
and separable components with nonzero interfacial 
areas, and their mixture represents a single material 
with a smoothly varying phasic composition. In con- 
trast, a multicomponent mixture is defined as con- 
sisting of different chemical components. 

In the following, a consistent two-phase mixture 
model, based on the familiar SFM, is developed, 
including equations for conservation of mass, 
moments and energy, along with boundary/i~tial 
conditions. As in a classical multicomponent mixture, 
all physical properties of a multiphase mixture are 
consequences of the properties of its constituents ; 
however, their functional forms are not assumed a 
priori but are rather derived strictly from the SFM. 
Hence, mathematically, the present fo~ulation is 
exactly equivalent to the SFM. The differences lie 
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NOMENCLATURE 

specific heat 
concentration of component k 

in a muIticomponent 
mixture 
capillary diffusion coefficient, equation 
(25) 
hindrance function, equation (26) 
gravity vector 
enthalpy 
latent heat of phase change 
diffusive mass flux 
capillary pressure function 
relative permeability 
effective thermal conductivity 
absolute permeability 
mass source 
unit vector normal to boundaries 
pressure 
wall heat flux 
volumetric heat generation rate 
liquid saturation 
normalized liquid saturation, equation 

(52) 
general source term 
time 
temperature 
superficial or Darcian velocity in 
s-direction 
superficial or Dar&an velocity 
vector 
Cartesian coordinate. 

Greek symbols 

Yh two-phase advection correction 
coefficient, equation (44) 

l-h diffusion coefficient in enthalpy equation, 
equation (45) 

AP PI -I’\ 
E porosity 

Y. 
similarity variable 
relative mobility 

!” viscosity 
1 kinematic viscosity 

v density 

: 
surface tension 
any field variable 

fl heat capacitance ratio. equation (43). 

Subscripts 
c capillary 
k component 
I liquid 
n normal 
r relative permeability 
s solid matrix 
sat saturated state 
v vapor or gas 
c( constituent cc in a multiphase mixture 

: 

‘kinetic’ property 
pertinent to @. 

Superscript 
0 reference. 

solely in the form of the governing equations, their 
physical meanings and amenability to numerical 
implementation. 

After presenting the formulation, the paper points 
out the analogy between the new model and that 
describing the transport of a conventional multi- 
component mixture in porous media. From this 
analogy we conclude that the proposed model greatly 
facilitates the numerical analysis of general transient 
multi-dimensional two-phase flow through porous 
media. Moreover. when applied to some specific cases, 
the proposed model lends new insights into physical 
phenomena. In a companion paper 1241, the capa- 
bilities of the two-phase mixture model are dem- 
onstrated through application to pressure-driven boil- 
ing flow adjacent to a vertical heated plate inside a 
porous medium, namely the two-phase flow problem 
of the boundary-layer type. 

2. FORMU~TION OF THE MODEL 

The present formulation for two-phase flow 

through porous media begins with the definition of a 
multiphase mixture with two flowing phases as con- 

stituents. Similar to a classical multicomponent mix- 
ture, a multiphase mixture can be thought of as con- 
sisting of diffusing constituents (phases). However. in 
the latter case it should be kept in mind that the 
interfacial area between constituent elements (phases) 
is no longer negligibly small but rather of finite scale. 
As a consequence, two basic physical assumptions 
underlie such a multiphase mixture formulation. One 
is that a system of two separable phases can be viewed 
as a continuum in which any location r can be sim- 
ultaneously occupied by both phases (Fig. 1). The 
other requires that the control volume, on which the 
model of differential form is based, should be larger 
than the maximum dimension of any phase element. 
but much smaller than the characteristic scale of the 
system. 

In addition to the above conceptual definition of 
the multiphase mixture, several mean mixture prop- 
erties need to be defined before proceeding to con- 
struct the conservation equations. 

The mixture density and mixture velocity are 
defined, respectively, as 

p = P,s+p,(l-3) (1) 
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FIG. 1. Schematic illustration of a control volume containing a multiphase mixture. 

PU = PIUl fPv% (2) 
where s is the liquid saturation denoting the volu- 
metric fraction of the void space occupied by liquid 
and u is the superficial (or Darcian) velocity vector 
based on the total cross-sectional area of both the 
fluid and the porous medium. Since the superficial 
velocity of a phase is related to its intrinsic velodity 
by the phase volume fraction, equation (2) implies 
that the mixture velocity is a mass-weighted average 
of the intrinsic phase velocities multiplied by the 
porosity. The specification of the mixture pressure is 
more involved because of the difference between liquid 
and gas pressures due to capillary forces. Here this 
difficulty is circumvented by using a modified Chav- 
ent’s pressure variable [ 191. Let 

v(s) = 
1 

k,,(s) ! k”(S) 
VI V” 

represent a pnean kinematic viscosity of the two-phase 
mixture, and define relative mobilities by 

n,(s) = J”(s) = v(%(sYv, (4) 

and 

n,(s) = 1 --i(s) = V(S)~~(S)/V”. (3 

The pseudo mixture pressure is then defined as [19J 

PI+P”+_I PC p=- 
s 2 20 

V+(5) --U&91 de. (6) 

Subscripts 1 and v refer to the liquid and vapor (or 
any kind of gas) phases, respectively. The term v rep- 
resents the kinematic viscosity, k, is the relative per- 
meability of a phase as usually introduced in the classi- 
cal SFM, and pc, the capillary pressure, denotes the 
difference between the pressures of the two phases due 
to interfacial surface tension. 

Obviously, when the capillary force is ne~i~bly 
small, p = pl = pv. Moreover, as the liquid saturation, 
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.Y, approaches unity (pure liquid) or zero (pure vapor), 
the mixture pressure defined in equation (6) reduces 
to the appropriate single-phase pressures. These 
observations show that the definition in equation (6) 
is consistent with a mixture theory. Later, we show 
that this definition can greatly simplify the momentum 
conservation equation for a bulk mixture. 

Having defined the basic mean properties of a two- 
phase mixture, we now formulate conservation equa- 
tions for such a mixture by starting from the governing 
equations for each individual phase, which are avail- 
able from the SFM. In the following, the SFM is first 
summarized. 

2.1. Separateflow model (SF%?) 
As discussed by Scheidegger [4] or Bear [5], the 

conventional form of the equations governing two- 
phase, immiscible, incompressible flow through a 
porous medium are : 

(1) The differential equations expressing the prin- 
ciple of mass conservation for two phases : 

(7) ,,[.~+v.u,]=L% 

i 
w -4 +V*u 

P” E at v = k” 
1 

(8) 

where E is the porosity of the porous medium, and nil 
and ti, are mass sources of liquid and vapor, respec- 
tively, which may arise due to internal phase change 
or chemical reactions. In the absence of any external 
mass source or sink, 

ti,+tij2, = 0. (9) 

Equations (7) and (8) assume that the porous medium 
is not deformable and the fluids are incompressible. 

(2) The Darcy flow model, reflecting relationships 
of flow velocities with phase pressures : 
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u, = - 2; (VP, -p,g) (10) 

u, = -K”,‘- (V/J,, -p,.g) (1l) 

where the presence of body acceleration has been 
taken into account. In equations (10) and (1 l), K is 
the absolute permeability of the porous medium, and 
k, the relative permeability of a phase. 

(3) The definition of capillary pressure, pC, between 
two phases : 

PC =Px--PI. (121 

The capillary pressure, p,,, is further assumed to be 
adequately represented by Leverett’s well-known J 
function [4] : 

(13) 

in which G is the vapor-liquid interfacial tension. 
Equations (7)-(13) constitute a full system of 

governing equations for the unknown vector velocities 
u, and u,, scalar pressures p, and pv, and scalar liquid 
saturation, s. 

2.2. Conservation of mass 
The mass conservation equation for a two-phase 

mixture can readily be obtained by addition of the 
phase conservation equations (7) and (8). Note that 
the production of the vapor phase, ti,_, must come at 
the expense of the liquid phase (equation (9)). Hence, 

e$ +v.(prr) = 0. (14) 

It is clear that the continuity equation is just a dupli- 
cate of the corresponding equation for single-phase 
mixture flow. Since the mixture density is strongly 
variable, the multiphase mixture flow should be cate- 
gorized as compressible. 

2.3. Conseruation ~~rno~~eiltur~~ 
The development of the equation governing the 

conservation of momentum for a two-phase mixture 
needs a few algebraic manipulations. First. the 
momentum equations, equations (10) and (1 l), for 
the two phases are multiplied by their respective phase 
densities, and the resultant identities are then added 
together. This yields 

Pu = -~~I(I,Vp,+~“v~“)-(i,~,+a”p,)gl. (1% 

From the definition of the mixture pressure in equa- 
tion (6). it is easy to show that 

n,vp, + 1, VP, = vp. (161 

Thus, the momentum equation for the two-phase mix- 
ture can be recast as 

u = - ;$ [Vp-p,(s)g] 

where the mixture viscosity is defined as 

/L(S) = P(S) * V(S). (IX) 

It should be noted that, in equation (17), we have 
introduced a new mixture density, p,(s), appearing 
before the body acceleration. This density is defined 
as 

p,(s) = p,E.,(s)-tp,ii,(s). (19) 

We shall refer to this quantity from now on as the 
kinetic mixture density, in order to distinguish it from 
the conventional static density, p(s), defined by equa- 
tion (1). The kinetic density acquires its name because 
of its dependence on the relative mobilities of the 
phases. The two kinds of densities are generally 
different from each other. 

2.4. Conservation 0J‘liquid mass 
Now we have developed one vectorial and one sca- 

lar governing equation for the unknowns, u and p. 
However, all mean physical properties of the two- 
phase mixture, as defined in equations (l), (3), (18) 
and (19), are strongly dependent on the constituent 
concentration, namely the liquid saturation, s. There- 
fore, in order to complete the mathematical system, 
one also needs a governing equation for the liquid 
saturation, which is given by the statement for con- 
servation of liquid mass. This statement can be math- 
ematically derived using the difference of the two mass 
conservation equations for the phases, equations (7) 
and (8). This results in 

Since A, + & = I, it can be seen that 

&VP, -i.,Vp, = -2A,&Vp, 

+ (A, -ii, )(&VP, +d,Vp, 1 

= -2&%,Vpp,+(J.,--Av)V~. (21) 

Thus, equation (20) can be rewritten as 

where pi is the derivative of the capillary pressure 
function with respect to the liquid saturation. Next, 
substituting the momentum equation, equation (17). 
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and using the continuity equation, equation (14), and 
after several algebraic manipulations, we obtain 

a@,4 
&at +V*[puil(s)] = v- ( - $i(l -a)p;vs ) 

-v- 
( 

$1(1 -n)(p,-p”)g 
> 

+ti,. (23) 

Now we introduce a total mass flux j defined as 

j = -~(s)Vs+~(s)~~g 

where D(s) is the so-called capillary diffusion co- 
efficient, i.e. 

D(s) =-&~~l-a)*[-P,ol (25) 

and f(s), expressed as 

f(s) = Gus (26) 

is here termed the hindrance function for phase 
migration and eventual separation. The physical 
meaning of the function f(s) is similar to the well- 
known hindrance function in sed~entation theories 
and the reader is referred to ref. [25] for further details 
on its properties. 

With the above definition, equation (22) eventually 
reduces to 

Gw) 
Eat +V* [WA(S)] = -V*j+lj2,. (27) 

This equation is a direct manifestation of the liquid- 
phase mass balance. The total mass tlux j is a com- 
bination of the capilla~ty-indu~d diffusive flux and 
the gra~ty-indu~d migrating flux, as seen from its 
definition, equation (24). For a two-phase system, one 
composition conservation equation such as equation 
(27) is sufficient since overall constituent conservation 
calls for s,+s, = 1. 

In equations (14), (17) and (27) the basic variables 
pertinent to each constituent (phase) have been 
ignored. Fortunately, however, within the frame of 
this formulation, definite algebraic relations exist 
between relative motions of the bulk mixture and each 
phase. These relations can be derived as follows. 

From the definition of the mixture pressure, equa- 
tion (6), it is evident that 

VP = avp, + (1 - I)@” (28) 

and operating a vectorial gradient over the capillary 
pressure equation (12) one obtains 

VP, = VP, -VP, * (2% 

Solving equations (28) and (29) simultaneously for 
Vp, and Vp, in terms of Vp and VP,, we get 

VP, = vp+nvp, (30) 

vp, = Vp+(l -A)Vp,. (31) 

Further, substituting these results into the SFM, and 
recognizing the relationship between Vp and pu on a 
mixture level, yields 

plul = Ipu+j (32) 

P”U, = (1 -Gu-_j (33) 

where j is the diffusive mass tlux as defined in equation 
(24). Note that p.u, in equations (32) and (33) rep- 
resents the true mass flowrate of the c&h constituent, 
while I,pu is the virtual mass flowrate of the same 
~nstituent in the bulk stream of the whole mixture, 
which has a mixture mean velocity. Thus, we conclude 
that the quantity j has a clear physical meaning as a 
diffusive mass flux, though initially it is defined only 
for mathematical convenience. 

Furthermore, with the aid of equations (32) and 
(33), the flow characteristics of individual phases can 
readily be obtained, once one has solved the flow 
problem of the bulk mixture. Thus, the detailed flow 
aspects of each phase are not smeared out in the 
present model ; they are stili accessible wherever they 
are needed. This is why the model is called the IWO- 
phase mixture model, rather than simply a mixture 
model, implying that, in the latter, the intrinsic two- 
phase characteristics are usually lost. 

2.5. Conservation of energy 
For nonisothermal two-phase flows, one more 

governing equation is required to determine the tem- 
perature field. This can be obtained from the total 
energy conservation equation for a combined solid 
matrix-multiphase mixture system and by invoking 
the assumption that local thermodynamic equilibrium 
prevails among the solid matrix, vapor and liquid 
phases (i.e. T = T, = T, = TV) ; thus [Z] 

+ V * huh, + w@J = V . (WV + e (34) 

where keR is the effective thermal conductivity of the 
combined three-phase system and 0 is a volumetric 
heat source. The enthalpies in equation (34) are 
related to the temperature by 

k, = c,T+h: (3W 

h, = c,T t35W 

h, = c, T+ [(CI -cJ T,t +&I 135c) 

where it is assumed that h, ] r= 0 = 0 and (hY - h,) 1 T= *,, 
= h,. 

The advective term in the energy equation, equation 
(34), can be further decomposed into contributions 
due to the bulk mixture motion and intrinsic relative 
phase motion ; that is, 

c P&h, = P&, + c (h, - h,)@,u, - hpu), 
,l o! 
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a = 1, v (36) the fact that equation (41) is a unified formulation 

where the mixture enthalpy h, is defined as 
representing both the temperature equation in the 
single-phase regions and the liquid saturation cqua- 

h, = h,i+h,(l -i,). (37) tion in the two-phase region, an efficient single- 

Again, such a definition gives kinetic characteristics 
domain methodology, using equation (41), can be 

to the mixture enthalpy ; this is why we add the sub- 
proposed for solving complicated problems involving 

script K and refer to it as the kinetic mixture enthalpy. 
multiple regions [27]. More details are presented 

h,. On the other hand, a static mixture enthalpy is 
below. 

ordinarily defined as 
After a few manipulations, equation (41) can be 

transformed into the following more useful form, 

ph = p,sh, +p”( I -s)h,,. (38) which contains only one variable. the mixture 

From the definitions of these two mixture enthalpies. 
enthalpy. h, defined in equation (38) : 

the corresponding mixture specific heats can be 
obtained as R “($! + v - (y,,puh) = v . (1-,Vh) + v 

c, = c,i.+c,(l -A) 

pc = p,sc,+p,(l --s)c,. 

(39) 

(40) .[rh(h-h,,,,)Vlnp]+V. ,f(~)K$@!~g +Q. (42) 
C L > 

Now, using the above decomposition and with the 
help of equations (37) and (38), the energy equation The coefficients newly introduced in equation (42), 

can be simplified to the following form, in which only namely the heat capacitance ratio Sz. the advection 

mixture variables are involved : correction coefficient Y,, and the diffusion coefficient 
fh are defined, respectively, as 

_( 

= V* t&VT)+V* [(h, -h,)j] +Q. (41) 

!a=&+ 
p,c,(l -e) dT 

P dh 
(43) 

The physical meanings of all the terms appearing in 
equation (41) are quite clear, since the equation 
strongly resembles the classical formulation describ- 

(44) 

ing heat transfer of a single-phase multicomponent 
&s)+g;l(l-s) 

mixture inside porous media. Nevertheless. several 

particular and salient points are worth outlining. and 

First, equation (41) is a variable-property equation, 
in which all physical properties are strongly dependent l- = PCS? +k dT 
on the liquid saturation. Also. we include a source 

h (45) 
PI eCf dh 

term to describe possible volumetric heating. 
Secondly, the second term on the RHS accounts for 
the energy flux due to relative phase motion, including 
both sensible and latent heat transport. Lastly, equa- 
tion (41) is valid throughout a whole problem domain. 
which may simultaneously involve single- and two- 

phase subregions. 
The general representation of energy conservation, 

equation (41), may further be recast into forms which 

where the term dT/dh denotes the derivative of the 
temperature with respect to the mixture enthalpy. It 
should be stressed that equation (42) represents the 
temperature equation in a single-phase region, 
whereas it reduces to the liquid saturation equation 
in the isothermal two-phase region. The relationships 
of the mixture enthalpy with either the temperature 
or the liquid saturation can be explicitly written as 

are more suitable in various applications. The fol- 
lowing two subsections are designed for this purpose. 

h 

I- 

h d h,,,, 
2.5.1. Isothernd two-phase jaws. A two-phase (‘I 

region can often be assumed to be isothermal without T= TW h,,;,, < h d hwt (46) 

much loss of accuracy. This is especially true for 
single-component two-phase flow with phase change, T,,, + h-h,s, h,,;,, < h 

because the thermodynamic relationships require a 
c\ 

nearly isothermal condition in the two-phase region 
[I 1, 261. For a uniform temperature field, the energy 
equation. equation (41), reduces identically to the 
liquid mass conservation equation, equation (27). in s = 
the two-phase region. This outcome is physically 

I 

1 h G h,,;,, 

P h,,,,--h 
~ (-P.--j h,,,, < h < A “_a,. 
PI h, 

(47) 

intuitive since if the system has no temperature gradi- 0 h,,,, < jr 
ent, the energy transport will be caused solely by phase 
change controlled by mass transfer. In recognition of From the definition (46), it follows that 
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Four observations can be made regarding equations 
(42)-(48). First, by means of equations (46) and (47), 
the temperature and liquid saturation can be uniquely 
determined from the mixture enthalpy. Secondly, the 
solid matrix does not contribute to two-phase trans- 
port in the isothermal two-phase region. Thirdly, 
within single-phase regions no correction (y,, = 1 in 
this case) needs to be made for the convective term in 
equation (42). Lastly, both the second and third terms 
on the RHS vanish within single-phase regions. 

Equations (14), (17) and (42) establish a one- 
domain formulation for flow problems in multiple 
regions, if the two-phase region can be assumed to be 
isothermal. The formulation is attractive, since there 
is no need to track the moving interfaces between 
different regions, complex interfacial boundary con- 
ditions are not required to match, and it is amenable 
to solution with existing numerical algorithms [28]. 

2.5.2. Nonisothermal two-phaseflows. Transport in 
unsaturated porous media constitutes another aspect 
of two-phase flow and heat transfer in engineering 
applications [29]. In this case, the two phases are 
usually of different chemical components ; the com- 
bination of water and air is a typical example. Now, 
the temperature distribution in the two-phase zone 
is no longer uniform but principally of interest. An 
alternative form of equation (41), in terms of tem- 
perature, is thus preferred. This can be achieved by 
substituting the relationship of enthalpy vs tempera- 
ture, given by equation (35), into equation (41). After 
proper arrangement, it follows that 

= V * (k,,VT) + e (49) 

where phase change between the two phases has not 
been considered. 

2.6. Constitutive relationships 
Closure of the system of conservation equations 

obtained above for a multiphase mixture requires 
constitutive equations for the relative permeabilities, 
k, and k,, the capillary pressure function, J(s), 
and the effective thermal conductivity, keW In the 
petroleum and nuclear reactor safety literature, the 
simplest correlations used for k,, and k, are power 
functions of liquid saturations, s ; i.e. 

& = S” (50) 

k, = (1-S)” (51) 

where S is the normalized liquid saturation (known 
as holdup in chemical engineering) and is defined as 

s = (s-ssli) 
I. \ (521 

where s,~ is the irreducible liquid saturation. This static 
(or residual) liquid saturation cannot be removed by 
drainage, but only by evaporation. Then, the range of 
the variation in the normalized saturation is between 
0 and 1. 

It is worthwhile pointing out that linear functions 
(n = 1) of the relative permeabilities are usually 
employed for geothermal systems due to their sim- 
plicity and accuracy [l, 30, 3 11, while cubic forms are 
widely used in petroleum and nuclear safety engin- 
eering [6, 32, 331. 

The capillary pressure function, J(s), is generally 
multivalued. In gas-liquid systems, the experimentally 
obtained J-values typically lie between two limiting 
curves, known as the drainage and imbibition curves. 
The drainage curve is obtained when the liquid satu- 
ration, s, is decreased steadily from its maximum value 
(which is generally equal to unity). On the other hand, 
the imbibition curve corresponds to measurements 
conducted when the liquid saturation is steadily 
increased from its residual value, sli, to unity. 

Consequently, one must decide which of these mul- 
tiple values should be used in a theoretical analysis of 
a specific two-phase flow system. In the literature, 
drainage data, imbibition data, or an average curve 
between these two limits, has been employed. Udell 
[26] correlated imbibition capillary pressure data 
obtained by Leverett [34] with 

J= 1.417(1-S)-2.120(1-S)2+1.263(1-S)3 

(53) 

for applications in drying and porous heat pipes. 
In contrast, Grosser et al. [35] argued that a drain- 

age curve should be used in transient analysis of co- 
current two-phase flow in a trickle reactor (a type of 
chemical reactor). Their J-function was correlated as 

J = 0.48+0.036ln 

and was further extended to the counter-current case 
[36], and applied to the analysis of transient two- 
phase flow in packed beds [37]. 

In nuclear reactor safety analysis, both drainage 
and imbibition capillary pressure data are correlated 
to obtain the following widely used J-function 

(55) 

Although numerous constitutive correlations for 
the J-function exist, it should be noted that the 
governing equations obtained here for a multiphase 
mixture are not limited to a certain correlation. This 
is because all correlations behave as decreasing J- 
functions with increasing liquid saturation, and thus 
produce an always positive capillary diffusion co- 
efficient, D. 
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The effective thermal conductivity for a composite 
system consisting of the solid matrix and the flowing 
mixture, &, is also a function of the liquid saturation. 
The roughest estimation of keff can be written as 

ke,r = k,(l -E)+k,ES+/i,E(l -s) (56) 

where k, is the thermal conductivity of the solid 
matrix. Alternatively, a more elaborate function can 
take the form [38] 

k,f, = ks,. + J(s) (k,, - k,, ) (57) 

where k,, is the thermal conductivity when the liquid 
saturation is zero and k,, corresponds to the case when 
the porous medium is fully saturated with liquid. 
Other much more sophisticated correlations for k,, 

are available in the literature; see for example ref. 

[391. 

2.7. Initial/boundary conditions 

In order to make problems well-posed, appropriate 
boundary and initial conditions are needed in the 
present two-phase mixture formulation, Initial con- 
ditions are usually known or taken from a steady- 
state solution. 

Various types of hydrodynamic boundary con- 
ditions are possible. The first and most common type 
is the impermeable condition, which requires no mass 
exchange through the wall. If the wall is at rest in the 
chosen frame of reference, this implies that the normal 
component of the two-phase mixture velocity must 
vanish ; i.e. 

u*n=O. (58) 

However, a slip condition is allowed at the imper- 
meable surface, since Darcy’s law is used here to for- 
mulate the momentum equation for the two-phase 
mixture. 

Other important types of hydrodynamic boundary 
conditions include constant mass flow rates of the 
two-phase mixture and constant pressures along per- 
meable surfaces ; both can be directly implemented in 
the present formulation. 

The present formulation also requires boundary 
conditions for the liquid saturation. Either the liquid 
saturation itself or its gradient should be specified at 
the boundaries. For example, in condensing or boiling 
flows, three zones often appear near cooled or heated 
bodies. namely, two single-phase (pure liquid and 
vapor) regions sandwiching a two-phase region [ 11. 
14, 40, 411. The boundary condition for liquid satu- 
ration is, therefore, zero at the boundary adjacent to 
the vapor region, and unity at the other boundary. 
Another type of boundary condition for the liquid 
saturation can be obtained for an imposed wall heat 
flux, 4. For an isothermal two-phase region, the 
energy conservation equation, equation (49), at a 
heated/cooled surface reduces to 

-- Y j-n= hfe (59) 

or. in another form, 

(60) 

In the absence of body acceleration, this simplifies to 

^ 
_ D .!” = -Y 

dn k,, 
(61) 

It can be seen that a version similar to the so-called 
second type of boundary condition in classical mass 
transfer theories is generated here. 

For isothermal two-phase flows, if the enthalpy 
formulation, equation (42). is employed, the bound- 
ary conditions become 

/I = !1,““,1 (62) 

at constant temperature or liquid saturation bound- 
aries, and 

(63) 

at a boundary with a specified heat flux q. An adiabatic 
boundary condition can be obtained from equation 
(63) by setting q = 0. The 2nd and 3rd terms on the 
LHS of equation (63) vanish in single-phase regions 
and equation (63) reduces to the familiar version for 
single-phase fluids. 

3. DISCUSSION 

In the preceding section, the present model has been 
rigorously derived from the classical SFM, without 
invoking additional approximations. In other words, 
the new model is an alternative, but equivalent, ver- 
sion of the original SFM. Furthermore, in order to 
understand the concept of a multiphase mixture and 
the physical meaning of the conservation equations. 
two underlying physical assumptions are emphasized : 
first, all constituents (phases) simultaneously occupy 
regions of space and, secondly, the control volume 
employed for constructing the governing differential 
equations is larger than the dimensions of the phase 
elements, but much smaller than the characteristic 
length of the physical system. The same assumptions 
are also utilized in other models of two-phase flow in 
porous media. 

3.1. Analogy to multicomponent mixture theor? 
Table 1 summarizes the proposed two-phase mix- 

ture model and compares it with the familiar model for 
a multicomponent mixture in porous media. Striking 
similarities are expected since, from the very outset, 
the multiphase mixture is conceived to be similar to a 
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Table 1. Summary of conservation equations in the two-phase mixture mode1 and comparison with a multicomponent 
mixture modelf 

Two-phase mixture Multicomponent mixture 

Mass 

momentum 

Liquid mass 

Energy 

m “-- 
[@C),Ei-pC(l-S)]-- C#X,U*v?" at 

+(Ci-cylj.VT=V.(k;,‘lJTf+e 

t Underlined are the differences between the two models. 

~ulti~omponent mixture. The two differ only in that 
the former has a finite interfacial area and strong 
variations in physical properties between constituent 
elements (phases). 

These differences, however, have several important 
implications. First, the disparity in the properties of 
the two constituents (liquid and gas) makes the multi- 
phase mixture flow a much stronger variable~pro~~y 
problem than multicomponent mixture flow. This can 
be expected to cause considerabIe di~culties in future 
analytical and numerical studies of two-phase flow 
problems via the current formulation. 

Secondly, under the action of gravity, the large 
difference between the two phase densities contributes 
to diffusion of mass between the constituents. Thus, 
a term associated with this gra~tational effect is 
included in the total diffusive flux. In contrast to the 
conventional diffusive flux, this gravity-induced 
~grating flux does not depend on the co~~ntration 
gradient. The other cause of mass diffusion between 
the constituents in the multiphase mixture is the capil- 
lary force, which is indeed provolone to the con- 
titration (saturation) gradient ; thus, a capillary 
diffusion coefficient is introduced according to con- 
ventional practice. The importance played by the 
gra~tation~ effect in diffusion of mass can be deter- 
mined by evaluating the relative ma~itude of the two 
driving forces. In systems with small capiltary forces 
(e.g. in ~gh-~~eability media), the cavitations 
effect dominates and is thus responsible for phenom- 
ena such as phase separation and flow maldis- 
t~bution, which are often observed in m~tiphase 
reactors and other systems of t~hnologi~l import- 
ance, but are as yet little understood. Addressing and 
clarifying these ~mpli~ted muiti~dimensional 
phenomena will constitute a large part of future 
research using the present formulation. 

The last difference between the two models, as noted 
in the energy equation, equation (49), is that the mass 
diffusion causes sensible heat transfer of the bulk mix- 
ture, if the speciiic heat values of the two co~iituents 
differ from each other. 

With the general features of the new fo~ulati~~ 
stated, we now proceed to consider some specific 
applications. The first example is concerned with one- 
dimensional two-phase flow with phase change. 
Under the iso~e~al assumption for the two-phase 
region, the liquid mass conservation equation is 
employed instead of the energy equation. The con- 
tinuity and liquid mass co~se~ation equations then 
reduce to 

in a 1-D Cartesian coordinate system. It can be seen 
that the two-phase mixture model requires only two 
governing equations for the variables u and s, while 
the phase velocities uI and sr, are algebr~~ally deter- 
mined from equations (32) and (33). If desired, the 
pressure profile can subsequen~y be calculated from 
the mixture moments equation. In contrast, in pre- 
vious studies l43-453 based on the SFM, four differ- 
ential equations (two continuity and two moments 
equations separately for the two phases) must be sim- 
~taneously solved for the un~owns: u,, q, p, and 
pV, and the liquid saturation is iteratively determined 
from the capillary pressure function given by equa- 
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tions (12) and (13). Therefore. equation set (64) is 
more convenient for the study of transient effects in 
two-phase flow through porous media with phase 
change. Furthermore, the form of the equation set 
lends additional insight for finding possible analytical 
solutions. To show this, we further neglect internal 
phase change and the gravity-induced mass flux, as 
is done in ref. 1441. The governing equations then 
become 

If the boundary condition for the velocity u evolves 
with time in the manner of t _ li2. the above equations 
admit a similarity variable, n = .x/J(f), which reduces 
equation (65) to a set of ordinary differential equa- 
tions. This change of variables known as the Boltz- 
mann transformation in heat conduction problems 
and applied by ~Sullivan [45] to study the thermo- 
dynamic behavior of geological media. is the tool 
employed by Doughty and Pruess f43j to obtain an 
exact solution for two-phase flow in a cylindrical coor- 
dinate system. 

Another commonly encountered 1-D case deals 
with steady two-phase flow induced by bottom and/or 
volumetric heating [6. 91. Due to the continuity 
requirement and the boundary condition at an imper- 
meable surface, given by equation (S8), the mixture 
velocity vanishes in this case. Hence, equation (64) 
simplifies to 

1 t 

-g fti, = 0. 

The mass source rate, tiz,, is equal to (j/h, in the 
isothermal two-phase zone. After integration and 
using the boundary condition given by equation (S9), 
one obtains 

Equation (67) represents the so-called Lipinski equa- 
tion 161. 

Further scrutiny of the present formulation reveals 
that boundary layer flows also exist in the two-phase 
case. Indeed, this type of flow has been noticed by 
several authors [13, 14, 411. Regrettably. due to the 
cumbersome form of the SFM, these flows are never 
dealt with as strictly as in the classical boundary layer 
theory [46]. Instead, unjustified assumptions are intro- 
duced, and a systematic two-phase boundary layer 
theory is far from being developed. The companion 
paper [24] represents a first step in investigating 
boundary layer flows based on the present formu- 
lation. 

3.3. Grneral ~e~~o~~lo~y for numerical solutions 
The present fo~ulation reduces almost by half the 

number of governing differential equations for the 

primary variables involved in two-phase flows 
through porous media, when compared to the SFM. 
Therefore, it is more suitable for numerical implemen- 
tation, especially in applications where multi-dimen- 
sional effects are present. Furthermore, each of the 
conservation equations in the model can be cast into 
the general form 

where @, D,, and S, represent any dependent variable. 
diffusion coefficient, and source term. respectively. 
Hence, many existing numerical algorithms for solv- 
ing coupled single-phase transport equations can 
theoretically be employed. However, we believe that 
numerical solutions will be more difficult to obtain 
than in the single-phase case. because of the highly 
nonlinear nature of the set of transport equations and 
the presence of strongly varying transport properties. 

Another computationai advantage of the present 
formulation over the classical SFM is apparent for 
problems involving conjugate two-phase how with 
adjacent single-phase regions. When using the SFM, 
multiple region solutions are required due to the 
differences in the conservation equations for the two- 
and single-phase regions [27]. The primary numerical 
difficulty associated with such a method centers on 
tracking a moving boundary, which is generally an 
unknown function of space and time. Therefore, 
sophisticated numerical procedures. such as moving 
numerical grids and/or coordinate systems, are usu- 
ally needed. In contrast, since the present formulation 
for two-phase flow strongly resembles the one for 
single-phase transport. a unified fo~ulation is 
derived that is valid throughout the entire domain. 
including both two- and single-phase regions. With 
such a continuum formulation, the interfaces between 
the regions do not require explicit consideration, The 
need for moving numerical grids and/or coordinate 
mapping is thus eliminated, as is the need for pre- 
scribing complex interracial boundary conditions 
between regions internal to the domain. 

4. CONCLUSIONS 

In this paper, two-phase how in porous media is 
conceived as a muhiphase mixture flow. A consistent 
model for the multiphase mixture is presented that can 
be reduced to the classical theory for multicomponent 
mixtures when the interfacial area and property 
differences between the constituents vanish. The pre- 
sent two-phase model is equivalent to the SFM. 

The derived conservation equations contain the 
effects of the finite dimensions of the phase elements 
and the large property differences between them. 
These effects manifest themselves explicitly through 
the diffusive mass Aux due to the density difference 
between the two phases when under the action of 
gravity and through the con~ibution of mass transfer 
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to energy transport due to the difference in the 
enthalpies of the two phases. 

The two-phase mixture model opens new prospects 
for understanding complicated two-phase flows in 
porous media. It reduces the differential governing 
equations almost by half when compared to the SFM, 
rendering it suitable for numerical simulations with 
even moderate computer resources. The similarity 
between this fo~ulation and that describing single- 
phase multicomponent mixture flow provides new 
insights into several important problems, such as one- 
dimensional flows with phase change, boundary layer 
two-phase flows, and combined single- and two-phase 
flows in a single domain. Another significant advan- 
tage is that the fo~ulation does not smear out intrin- 
sic characteristics of the individual phases, although 
the differential governing equations deal solely with 
the bulk behavior of the mixture. This is because 
the formulation embodies simple algebraic relations 
between the motions of the multiphase mixture and 
its separable phases. 

Future work will consist not only of applying the 
two-phase mixture model to a variety of practical 
problems, but also of extending it to multicomponent 
two-phase flows (e.g. the liquid-vapor-air system) 
and to flows which include inertia and other non- 
Darcian effects. 
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